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PROJECT DESCRIPTION 

 

An emblem of the Gondwanan legacy, southern beech trees (Nothofagaceae) dominate the biomass of the southern 

hemisphere’s temperate forests (1), and have been at the heart of debates about the origins of the biota of the southern 

continents (2-5). Although Nothofagaceae are often associated with cool temperatures (6, 7), their distributions within the 

various southern continents are rather poorly explained by climate (6, 8). Enigmatic disjunctions (“beech gaps”) have been 

variously attributed to geographic variation in disturbance regimes (9), or to the supposedly poor dispersal of beech 

impeding recovery after removal by glaciation or volcanism (7). Conversely, beeches show an unexplained ability to 

displace a range of other tree species from climatically suitable sites (10).  

The ectomycorrhizal (EM) condition of beeches has been viewed mainly as a constraint on their dispersal because of the 

presumed difficulties in finding suitable fungal symbionts in landscapes otherwise largely populated by arbuscular 

mycorrhizal (AM) trees (11). Recent advances by us and others (12-14) suggest we might better understand landscape 

partitioning between beeches and AM trees by focusing instead on the implications of mycorrhizal symbioses for nutrition 

and nutrient cycling. Mycorrhizas are now known to underlie the formation of alternative stable states in tropical 

rainforests: short-circuiting of the nitrogen (N) cycle by EM fungi gives rise to monodominant EM stands that form a stable 

alternative to more diverse AM-dominated forests (12). EM fungi can obtain N directly from organic sources (15), 

enhancing N supply to their host trees but suppressing N mineralization and thus starving AM plants that are unable to 

utilize organic N sources (12, 16, 17). This raises the question: are southern beech stands a temperate analogue of the 

monodominant EM stands that arise as an alternative stable state in tropical rainforests? 

We will use a chronosequence approach to test hypotheses about landscape partitioning between beeches and AM trees, 

comparing trajectories of understorey light and soil C, N and P along beech-dominant and AM-dominant chronosequences 

in NZ, Chile and Tasmania. Wherever possible, we will pair sites colonized by beech vs. AM trees on the same parent 

material. We will then model the successional trajectories of mycorrhizal associations in south temperate forests as a 

function of soil parent material, climate, and seed sources, incorporating feedbacks on light and nutrient availability. We 

will also use natural ecotones and pre-existing paired plantations in Chile and NZ to compare the influences on beeches 

and AM trees on soil chemistry. Lastly, we will use a global dataset to review environmental partitioning worldwide 

between AM and EM trees. 

Capitalizing on recent advances in the fast-moving field of mycorrhizal ecology (12, 13, 18), this work has the potential to 

unify our understanding of the dynamics and distribution of beech forests, reconciling disparate interpretations that have 

developed in New Zealand, Chile and Tasmania (1), and resolving the puzzle of beech disjunctions. Our proposal also 
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breaks new ground internationally by jointly addressing both above- and belowground feedback loops associated with 

different mycorrhizal associations, and their consequences for forest development.  
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